技術文章
TECHNICAL ARTICLES伴隨我國汽車保有量的不斷增長,石油消耗與二氧化碳排放量同步增長,我國“十三五”末2020年的CO2排放總量控制目標是105億t,這一數值約占總排放量的30%。目前我國汽車的碳排放占到10%左右,2030年這一比例將增加至20%左右。氫燃料電池車由于能效高與使用過程*的特點,結合我國能源結構與碳排放控制目標,被認為是jiu發展潛力的新能源汽車。
氫氣的來源已被認為是影響氫能源汽車發展的關鍵因素之一,分析認為,可再生能源電解水與生物質制氫是遠期氫能供應的解決方案,而從目前至2050年的近中期,石化產業的制氫與副產氫仍是氫氣供應的經ji方法之一。
由于傳統石化行業用氫氣的雜質含量指標與燃料電池車用氫氣的指標有較大差別,石化產氫需要進一步純化脫除相應的雜質,才能得到滿足燃料電池車指標的氫氣。本文中以石化行業中主要的天然氣制氫裝置產氫為研究對象,系統研究了脫除氫氣中雜質的吸附劑與工藝技術,并為利用煉化氫制取燃料電池級氫氣提供了經濟可行的技術方案。
一、氫能指標與煉化用氫氣組成
1.1 燃料電池車用氫氣標準
燃料電池車用氫氣標準源于標準ISO14687-2:2012,國內的氫燃料電池車用氫氣行業標準、國家標準與國內外的標準對比如表1所示。
表1國內外氫氣指標要求對比
另外,美國機動車工程師學會制定的PEM燃料電池車用氫氣標準SAEJ2719—2015,對氫氣質量的要求與表1中各指標一致。結合相關研究與標準要求可知,硫化物、鹵化物、CO等氣體雜質對PEM的影響wei嚴重,也是氫氣純化過程中需要重點脫除的雜質。
1.2 煉化氫氣組成分析
煉化行業天然氣制氫氣裝置典型產品氫氣的組成如表2所示。
表2天然氣制氫產品組成(體積分數)
天然氣制氫裝置產生的中變氣,其中含有體積分數約75%的氫氣,需要進一步采用變壓吸附(PSA)技術脫除其中的CO、CO2與CH4等雜質。
煉化企業對氫氣中CO2和CO總量的要求為低于20×10-6,由于受到現有變壓吸附裝置吸附劑類型與工藝條件的限制,通過調整已有變壓吸附裝置的工藝參數,獲取滿足標準要求的氫氣,在技術經濟性上不可行。
本研究中,通過測試、改進并優選吸附劑類型,建立吸附劑裝填方案理論計算方法,搭建實驗裝置,系統研究了以制氫中變氣為原料氣制取CO含量低于0.2×10-6高純氫氣的吸附劑級配方案與工藝技術。
二、變壓吸附脫除雜質實驗研究
2.1吸附劑選型與性能測試
參考制氫中變氣中雜質種類,選擇硅膠、活性炭、分子篩以及改進的CO分子篩作為提純氫氣的吸附劑。對選擇的吸附劑利用麥克HPVA吸附儀測試了吸附等溫線(25℃),結果如圖1所示。圖1中,(a)、(b)、(c)分別為硅膠(Si)、活性炭(Ac)、分子篩(Z1)對CH4、CO、CO2的吸附等溫線,圖1(d)為CO分子篩(Z2)對CO和CH4的吸附等溫線。通過吸附等溫線可以確定吸附劑在塔內的裝填順序從下向上為硅膠、活性炭與分子篩,其中分子篩Z1對CO和CH4的吸附性能基本相近[圖1(c)]。經過Cu+交換的分子篩Z2在低分壓下對CO的吸附性能優于CH4[圖1(d)],裝填在吸附塔上層,用于保證低分壓下分子篩對CO的吸附脫除性能。
圖1吸附等溫線圖
2.2吸附劑裝填配比理論計算方法建立
采用langmuir吸附等溫方程:
式中,q為一定分壓下吸附質在吸附劑上的吸附量;qm為飽和吸附量;px為吸附質分壓(單位為MPa);b、c為常數。
擬合得到Si、Ac、Z1、Z2對CO、CO2、CH4的吸附等溫線方程,結果如表3所示。
表3吸附等溫線方程表
考慮一種吸附劑對不同吸附質的綜合吸附性能,根據原料氣體雜質分壓與產品氫氣中雜質含量要求,計算吸附劑理論裝填量,計算公式如式(1)。
式中,Mi表示脫除一定量的一種雜質所需要的一種吸附劑的裝填量,下標i表示Si、Ac、Z1與Z2;F表示原料氣流量,yin、yout表示被吸附雜質在原料氣與產品氣中的含量;qin、qout表示被吸附雜質在原料氣與產品氣分壓下的吸附量,計算公式見表3。
本研究中,忽略各種吸附劑對氫氣的吸附,一定量的雜質依次經過不同的吸附劑床層,終得到滿足標準要求的雜質含量,所需一種吸附劑的裝填量為該吸附劑吸附各種雜質的裝填量之和,計算公式如式(2)。
式中,如Mi.CO、Mi.CO2、Mi.CH4分別表示脫除一定量的CO、CO2、CH4所需要的一種吸附劑的量,Mi則表示脫除這些雜質所需要該吸附劑的總量。
設定原料氣總壓為2.1MPa,忽略壓降,產品氣總壓為2.1MPa,通過假設原料氣中每種雜質離開一種吸附劑床層的含量,利用表3中吸附等溫線與吸附劑裝填量計算式(1)、(2),求取每種吸附劑的裝填量。例如,假設總吸附時間為90s,原料氣流量為5m3/h,二氧化碳離開硅膠床層時,含量由18%降至5%;離開活性炭床層時,含量由5%降至0.5%;離開分子篩Z1床層時,含量由0.1%降至2×10-6,計算過程與結果示例如表4所示。
表4吸附劑裝填量理論計算示例
2.3實驗裝置設計與搭建
根據上述理論計算,本研究搭建了四塔變壓吸附氫氣提純實驗裝置,裝置工藝流程與裝置實體如圖2所示,控制時序方案如表5所示。
圖2四塔變壓吸附工藝流程與裝置實體
本研究中采用1塔吸附,2次均壓的時序控制方案,一個吸附塔從吸附、均壓、逆放至下一次吸附經歷12個步驟,每個步驟的工作時間在10——100s的范圍內可調,裝置設計壓力2.1MPa,規模為5m3/h。
表5四塔變壓吸附控制時序表
表5中,A、B、C、D表示4個吸附塔,1——12表示步序,A—吸附,E—均壓,E↑—均壓升,E↓—均壓降,C/-—順放/不執行,CD—逆放,P/V—吹掃/抽真空,R—終充。
2.4實驗研究與結果分析
本研究采用大連大特氣體有限公司配置提供的原料氣,組成與表4中理論計算用組成相近,根據上述計算結果,采用PLC200按照表5所示時序表編制控制方案,通過在線采樣并利用氣相色譜分析產品氣組成。實驗中,分別考察了總吸附時間為60、90、120s,即每個步序時間分別為20、30、40s時,實驗裝置運行穩定后,產品氣組成以及氫氣回收率,結果如表6所示。
表6變壓吸附產品氣組成與氫氣回收率
由表6可知,隨著總吸附時間增加,產品氫氣回收率增加,產品氫氣中CO、CH4的含量有所增加,CO2的含量穩定。通過實驗研究與結果發現,采用本研究中建立的吸附劑裝填理論計算方法得到的裝填方案,以及建立的變壓吸附實驗裝置與相應的控制方案,能夠脫除天然氣制氫中變氣中的雜質,得到滿足燃料電池車用標準要求的氫氣產品。
三、結果與展望
以天然氣制氫中變氣為原料,通過測試優選了脫除其中非氫雜質的吸附劑,建立了吸附劑裝填理論計算方法,并搭建了的變壓吸附實驗裝置,通過實驗研究得到了利用煉化天然氣制氫中變氣制取燃料電池級氫氣的吸附劑配比與工藝技術條件。但是,由于受到均壓次數少(僅為2次)與逆放壓力高(0.15——0.5MPa)的限制,產品氫氣回收率較低,需要通過進一步優化變壓吸附工藝條件提高回收率,才能提高該技術經濟性。另外,關于氫氣中10-9級別的硫與鹵素,實驗室現階段缺乏有效的分析手段,使用常規的氣相色譜均不能直接得到分析結果,關于痕量硫與鹵素的脫除,本研究團隊正在開發相應的材料與分析方法。
中國石化作為國內da的煉油化工生產單位,同時也是氫氣制造與使用規模大的單位。通過綜合優化企業氫氣供應,中國石化能夠向社會提供經濟性更高的氫氣,有力支撐近、中期氫能產業的發展。